Chapter 16: Acids and Bases

These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests! To get the most information, READ THE CHAPTER prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

The author is providing these notes as an addition to the students reading the text book and listening to the lecture. Although the author tries to keep errors to a minimum, the student is responsible for correcting any errors in these notes.

Arrhenius Concept of acids and bases, first introduced in the late 1800's
Acid Produce Hydrogen ions in aqueous solution
$\mathrm{HCl} \rightarrow \mathbf{H}^{+}+\mathrm{Cl}^{-} \quad$ Hydrochloric Acid is a strong acid.
Sulfuric Acid $\mathrm{H}_{2} \mathrm{SO}_{4}$ was the $1^{\text {st }}$ large quantity acid produced and used in the US
Base Produce hydroxide ions
$\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \quad$ Sodium Hydroxide - a strong base

Bronsted-Lowry Model The Arrhenius Acid/Base theory works great in water solutions, but it does not work in non-aqueous solutions such as Benzene. The Bronstead-Lowry Model covers this

Acid Proton Donor Base: Proton Acceptor
$\mathrm{HCl}+: \mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
HCl donates the proton and is the BL Acid. Ammonia accepts the proton and is the BL Base.
Conjugate Acid-Base Pair - Two substances related to each other as one donates and one accepts a single proton

| HCl | $+\quad$$\mathrm{H}_{2} \mathrm{O}$ \rightarrow $\mathrm{H}_{3} \mathrm{O}^{+}$ | + | Cl^{-} |
| :--- | :--- | :--- | :--- | :--- |
| Acid | Base | | |

Water is a polar molecule. The free electrons of the Oxygen pull away the H^{+}
[Instructor Draw pic of H-O-H] The H-O-H bond is at a 105°
Water behaves as a base, it accepts a proton:

$$
\begin{aligned}
& \mathrm{H}-\mathrm{OH}+\mathrm{HCl} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}
\end{aligned}
$$

$$
\begin{aligned}
& \text { I } \\
& \text { H } \\
& \text { I } \\
& \text { H } \\
& \text { Hydronium Ion [} \mathrm{H}_{3} \mathrm{O}^{+} \text {] }
\end{aligned}
$$

Acid Strength

$$
\begin{array}{lll}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} & \leftarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} & \mathrm{HA} \text { is an acid such as } \mathrm{HCl} \text {, it ionizes in solution } \\
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} & \leftarrow \rightarrow \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} & \text { But the reaction is also reversable! }
\end{array}
$$

Completely ionized or Dissociated $=$ strong acid
Reverse Reaction $=$ weak acid
$\mathrm{CH}_{3}-\mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3}-\mathrm{COO}^{-}$
$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3}-\mathrm{COO}^{-} \quad \leftrightarrow \quad \mathrm{CH}_{3}-\mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$ This is the reverse reaction and goes about 99% Acetate Ion Acetic Acid

Strong Acid Sulfuric, Hydrochloric, Nitric, HCl
Weak Acid Acetic Acid $-\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=1 \%$ dissociates, HF
Strong Base Sodium and Potassium Hydroxide
Diprotic Acid Can lose more than one H^{+}

$$
\text { Sulfuric Acid } \mathrm{H}_{2} \mathrm{SO}_{4} \longleftrightarrow \rightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-} \leftrightarrow \rightarrow \mathrm{H}^{+}+\mathrm{SO}_{4}^{-}
$$

Oxyacid Hydrogen is attached to an Oxygen $\mathrm{H}_{3} \mathrm{PO}_{4}$ is really $\mathrm{O}=\mathrm{P}-(\mathrm{OH})_{3}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ is really $(\mathrm{O}=)_{2} \mathrm{~S}-(\mathrm{OH})_{2}$
Organic acids - carboxyl groups - COOH Weak Acids
$\mathrm{CH}_{3}-\mathrm{COOH}$ Acetic Acid - Vinegar
Water Acid / Base Amphoteric Substance - can behave as an acid or base
Water can ionize $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \quad \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\quad \mathrm{OH}^{-}$
Accepts Donates a proton
$\mathbf{K}_{\mathbf{w}}=$ Ion-Product Constant Concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] times $\left[\mathrm{OH}^{-}\right]=$Const $=1.0 \times 10^{-14}$
This is an Equilibrium Constant.
Pure water has 1.0×10^{-7} Moles / Liter of H^{+}and 1.0×10^{-7} Moles / Liter of OH^{-}
$\mathbf{K w}=\left[\mathrm{H}^{+}\right] *\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{14}$
Add 1 Mole of HCl to 1 Liter of water and you get $1 \mathrm{Mole} /$ Liter of H^{+}as HCl is a strong acid and does ionize completely in water solution.

For the following H^{+}concentration, calculate the OH^{-}concentration: $\quad\left[\mathrm{OH}^{-}\right]=\mathbf{K w} /\left[\mathrm{H}^{+}\right]$

$$
\begin{array}{ll}
{\left[\mathrm{H}^{+}\right]=3.4 \times 10^{-4} \mathrm{M}} & {\left[\mathrm{H}^{+}\right]=2.6 \times 10^{-8} \mathrm{M}} \\
{\left[\mathrm{H}^{+}\right]=6.2 \times 10^{-9} \mathrm{M}} & {\left[\mathrm{H}^{+}\right]=8.1 \times 10^{-3} \mathrm{M}}
\end{array}
$$

For the following OH^{-}concentration, calculate the H^{+}concentration: $\quad\left[\mathrm{H}^{+}\right]=\mathbf{K w} /\left[\mathrm{OH}^{-}\right]$
$2.9 \times 10^{-11} \mathrm{M}\left[\mathrm{OH}^{-}\right]$
$3.9 \times 10^{-7} \mathrm{M}\left[\mathrm{OH}^{-}\right]$
$1.6 \times 10^{-6} \mathrm{M}\left[\mathrm{OH}^{-}\right]$
$1.2 \times 10^{-12} \mathrm{M}\left[\mathrm{OH}^{-}\right]$

Chem 1025, Ch 16
Page 2 of 3
$\mathrm{pH}=1-2 \quad$ Strong Acid
$\mathrm{pH}=7 \quad$ Neutral $=$ Pure Water with no dissolved CO_{2}
$\mathrm{pH}=13-14 \quad$ Strong Base

Calculate the $\mathbf{p H}$

$$
\begin{array}{cccc}
& {\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-9} \mathrm{moles} / \mathrm{L}} & \mathrm{pH}=9.00 & \text { Discuss Significant Digits } \\
& {\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-6} \mathrm{moles} / \mathrm{L}} & \mathrm{pH}=8.00 & \\
& {\left[\mathrm{H}^{+}\right]=3.6 \times 10^{-9} \mathrm{moles} / \mathrm{L}} & \mathrm{pH}=8.44 & \\
& {\left[\mathrm{OH}^{-}\right]=9.2 \times 10^{-2} \mathrm{moles} / \mathrm{L}} & \mathrm{pH}=12.96 & \\
\mathbf{p O H} & -\log \left[\mathrm{OH}^{-}\right] & {\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-3} \mathrm{M} / \mathrm{L}} & \mathrm{pOH}=3.00 \\
\mathbf{p H}+\mathbf{p O H}=\mathbf{1 4} & &
\end{array}
$$

Rainwater has a pH of 4-5 due to the dissolved CO_{2} which forms Carbonic Acid

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftarrow \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \leftarrow \rightarrow \mathrm{H}++\mathrm{HCO}_{3}
$$

Buffered Solutions

A solution is buffered by the presence of a weak acid
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \quad \leftarrow \rightarrow \mathrm{H}^{+} \quad+\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$
Show what happens with HCl and NaOH
$\mathrm{HCl} \leftarrow \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-} \quad$ Added to the above reaction forces the reverse reaction to occur. The added $\mathrm{H}+$ reacts with the $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$and this absorbs the H^{+}acid so there is no change in pH
$\mathrm{NaOH} \leftarrow \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \quad$ Added to the above reaction, the OH - reacts with the $\mathrm{H}+$ to form water. Again there is no change in pH .

You'll learn a lot more about pH and Buffered Solutions in Chem 1046!

