Chapter 16: Acids and Bases

These Notes are to <u>SUPPLIMENT</u> the Text, They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests! To get the most information, <u>READ THE</u> <u>CHAPTER</u> prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

The author is providing these notes as an addition to the students reading the text book and listening to the lecture. Although the author tries to keep errors to a minimum, the student is responsible for correcting any errors in these notes.

Arrhenius Concept of acids and bases, first introduced in the late 1800's

Acid Produce Hydrogen ions in aqueous solution

 $HCl \rightarrow H^+ + Cl^-$ **Hydrochloric Acid** is a strong acid.

Sulfuric Acid H₂SO₄ was the 1st large quantity acid produced and used in the US

Base Produce hydroxide ions

NaOH \rightarrow Na⁺ + OH⁻ Sodium Hydroxide – a strong base

Bronsted-Lowry Model The Arrhenius Acid/Base theory works great in water solutions, but it does not work in non-aqueous solutions such as Benzene. The Bronstead-Lowry Model covers this

Acid	Proton Donor	Base:	Proton Acceptor
$HCl + :NH_3$	\rightarrow NH ₄ ⁺ + Cl ⁻		

HCl donates the proton and is the BL Acid. Ammonia accepts the proton and is the BL Base.

<u>Conjugate Acid-Base Pair</u> – Two substances related to each other as one donates and one accepts a single proton

Acid	Base	Conjugate Acid	Conjugate Base
HCl +	$H_2O \rightarrow$	$H_{3}O^{+}$ +	Cl

Water is a **polar molecule**. The free electrons of the Oxygen pull away the H⁺

[Instructor Draw pic of H-O-H] The H-O-H bond is at a 105°

Water behaves as a base, it accepts a proton:

H-OH + HCl \rightarrow H₃O⁺ + Cl⁻ ... + H-O: + H⁺ - Cl⁻ \rightarrow H-O-H + Cl⁻¹ I H H Hydronium Ion [H₃O⁺]

Acid Strength

Acid Strength							
$HA + H_2O$	$\leftrightarrow H_{3}O^{+} + A^{-}$	HA is	s an acid such as HCl, it ionizes in solution				
$H_3O^+ + A^-$	$\leftrightarrow HA + H_2O$	But th	ne reaction is also reversable!				
Completely ionized or Dissociated = strong acid		strong acid	HCI				
Reverse Reaction = weak acid			CH ₃ -COOH Acetic Acid				
CH ₃ -COOH Acetic Acid	$+ H_2O \leftrightarrow H_3O^+ +$	CH ₃ -COO ⁻ Acetate Ion	This reaction goes about 1%, a weak acid				
	$\begin{array}{ccc} -COO^{-} & \overleftarrow{\leftarrow} \rightarrow & CH_{3}-C\\ \text{ate Ion} & & \text{Acetic} \end{array}$		D This is the reverse reaction and goes about 99%	0			
Strong Acid	ng Acid Sulfuric, Hydrochloric, Nitric, HCl						
Weak Acid	Acetic Acid – HC ₂ H ₃	$_{3}O_{2} = 1\%$ disso	ociates, HF				
Strong Base	Ong Base Sodium and Potassium Hydroxide						
Diprotic Acid Can lose more than one H ⁺							
Sulfu	ric Acid H ₂ SO ₄ $\leftarrow \rightarrow$	$H^+ + HSO_4^-$	$\leftrightarrow H^+ + SO_4^-$				
Oxyacid	Hydrogen is attached	to an Oxygen	H_3PO_4 is really O=P –(OH) ₃				
			H_2SO_4 is really (O=) ₂ S-(OH) ₂				
	Organic acids – carbo	oxyl groups – C	COOH Weak Acids				
	CH ₃ -COOH A	Acetic Acid - V	Vinegar				
Water Acid / Base	Amphoteric Substance	ce – can behave	e as an acid or base				
Water can ion	nize H ₂ O +	H_2O	$\leftarrow \rightarrow H_3O^+ + OH^-$				
	Accepts	Donates a pro	oton				
K _w = Ion-Product C	Constant Concentration	on of $[H_3O^+]$	times [OH^{-}] = Const = 1.0 x 10 ⁻¹⁴				
This is an Eq	uilibrium Constant.						
Pure water ha	as 1.0 x 10 ⁻⁷ Moles / Li	iter of H ⁺ and 1	$1.0 \ge 10^{-7}$ Moles / Liter of OH ⁻				
$\mathbf{K}\mathbf{w} = [\mathbf{H}^+] * [\mathbf{O}\mathbf{H}^-] = 1.0 \times 10^{14}$							
Add 1 Mole of HCl to 1 Liter of water and you get 1 Mole/Liter of H^+ as HCl is a strong acid and does ionize completely in water solution.							
For the following H^+ concentration, calculate the OH ⁻ concentration: $[OH^-] = Kw / [H^+]$							
$[H^+] = 3.4 x$	$10^{-4} M$	$[H^+] = 2.6 x$	x 10 ⁻⁸ M				
$[H^+] = 6.2 x$. 10 ⁻⁹ M	$[H^+] = 8.1 \text{ x}$	$\times 10^{-3} M$				
For the following OH ⁻ concentration, calculate the H ⁺ concentration: $[H^+] = \mathbf{K}\mathbf{w} / [OH^-]$							
2.9 x 10 ⁻¹¹ M	1 [OH ⁻]	3.9 x 10 ⁻⁷ M	[OH ⁻]				
1.6 x 10 ⁻⁶ M		1.2 x 10 ⁻¹² M					
Chem 1025, Ch 16	I	Page 2 of 3	23-Jul-09 8:04 PM				

pH = 1-2Strong AcidpH = 7Neutral = Pure Water with no dissolved CO_2 pH = 13-14Strong Base

Calculate the pH

pН

 $[H^{+}] = 1.0 \times 10^{-9} \text{ moles/L} \qquad pH = 9.00 \qquad \text{Discuss Significant Digits}$ $[OH^{-}] = 1.0 \times 10^{-6} \text{ moles/L} \qquad pH = 8.00$ $[H^{+}] = 3.6 \times 10^{-9} \text{ moles/L} \qquad pH = 8.44$ $[OH^{-}] = 9.2 \times 10^{-2} \text{ moles/L} \qquad pH = 12.96$ $- \log [OH^{-}] \qquad [OH^{-}] = 1.0 \times 10^{-3} \text{ M/L} \qquad pOH = 3.00$

pH + pOH = 14

pOH

Rainwater has a pH of 4-5 due to the dissolved CO₂ which forms Carbonic Acid

 $CO_2 + H_2O \leftarrow \rightarrow H_2CO_3 \leftarrow \rightarrow H_7 + HCO_3$

Buffered Solutions

A solution is buffered by the presence of a weak acid

 $CH_{3}CH_{2}COOH \quad \leftarrow \rightarrow H^{+} + CH_{3}CH_{2}COO^{-}$

Show what happens with HCl and NaOH

HCl $\leftarrow \rightarrow$ H⁺ + Cl⁻ Added to the above reaction forces the reverse reaction to occur. The added H+ reacts with the CH₃CH₂COO⁻ and this absorbs the H⁺ acid so there is no change in pH

NaOH $\leftarrow \rightarrow$ Na⁺ + OH⁻ Added to the above reaction, the OH- reacts with the H+ to form water. Again there is no change in pH.

You'll learn a lot more about pH and Buffered Solutions in Chem 1046!